// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime
import (
"runtime/internal/sys"
"unsafe"
)
func mapaccess1_faststr(t *maptype, h *hmap, ky string) unsafe.Pointer {
if raceenabled && h != nil {
callerpc := getcallerpc()
racereadpc(unsafe.Pointer(h), callerpc, funcPC(mapaccess1_faststr))
}
if h == nil || h.count == 0 {
return unsafe.Pointer(&zeroVal[0])
}
if h.flags&hashWriting != 0 {
throw("concurrent map read and map write")
}
key := stringStructOf(&ky)
if h.B == 0 {
// One-bucket table.
b := (*bmap)(h.buckets)
if key.len < 32 {
// short key, doing lots of comparisons is ok
for i, kptr := uintptr(0), b.keys(); i < bucketCnt; i, kptr = i+1, add(kptr, 2*sys.PtrSize) {
k := (*stringStruct)(kptr)
if k.len != key.len || isEmpty(b.tophash[i]) {
if b.tophash[i] == emptyRest {
break
}
continue
}
if k.str == key.str || memequal(k.str, key.str, uintptr(key.len)) {
return add(unsafe.Pointer(b), dataOffset+bucketCnt*2*sys.PtrSize+i*uintptr(t.elemsize))
}
}
return unsafe.Pointer(&zeroVal[0])
}
// long key, try not to do more comparisons than necessary
keymaybe := uintptr(bucketCnt)
for i, kptr := uintptr(0), b.keys(); i < bucketCnt; i, kptr = i+1, add(kptr, 2*sys.PtrSize) {
k := (*stringStruct)(kptr)
if k.len != key.len || isEmpty(b.tophash[i]) {
if b.tophash[i] == emptyRest {
break
}
continue
}
if k.str == key.str {
return add(unsafe.Pointer(b), dataOffset+bucketCnt*2*sys.PtrSize+i*uintptr(t.elemsize))
}
// check first 4 bytes
if *((*[4]byte)(key.str)) != *((*[4]byte)(k.str)) {
continue
}
// check last 4 bytes
if *((*[4]byte)(add(key.str, uintptr(key.len)-4))) != *((*[4]byte)(add(k.str, uintptr(key.len)-4))) {
continue
}
if keymaybe != bucketCnt {
// Two keys are potential matches. Use hash to distinguish them.
goto dohash
}
keymaybe = i
}
if keymaybe != bucketCnt {
k := (*stringStruct)(add(unsafe.Pointer(b), dataOffset+keymaybe*2*sys.PtrSize))
if memequal(k.str, key.str, uintptr(key.len)) {
return add(unsafe.Pointer(b), dataOffset+bucketCnt*2*sys.PtrSize+keymaybe*uintptr(t.elemsize))
}
}
return unsafe.Pointer(&zeroVal[0])
}
dohash:
hash := t.hasher(noescape(unsafe.Pointer(&ky)), uintptr(h.hash0))
m := bucketMask(h.B)
b := (*bmap)(add(h.buckets, (hash&m)*uintptr(t.bucketsize)))
if c := h.oldbuckets; c != nil {
if !h.sameSizeGrow() {
// There used to be half as many buckets; mask down one more power of two.
m >>= 1
}
oldb := (*bmap)(add(c, (hash&m)*uintptr(t.bucketsize)))
if !evacuated(oldb) {
b = oldb
}
}
top := tophash(hash)
for ; b != nil; b = b.overflow(t) {
for i, kptr := uintptr(0), b.keys(); i < bucketCnt; i, kptr = i+1, add(kptr, 2*sys.PtrSize) {
k := (*stringStruct)(kptr)
if k.len != key.len || b.tophash[i] != top {
continue
}
if k.str == key.str || memequal(k.str, key.str, uintptr(key.len)) {
return add(unsafe.Pointer(b), dataOffset+bucketCnt*2*sys.PtrSize+i*uintptr(t.elemsize))
}
}
}
return unsafe.Pointer(&zeroVal[0])
}
func mapaccess2_faststr(t *maptype, h *hmap, ky string) (unsafe.Pointer, bool) {
if raceenabled && h != nil {
callerpc := getcallerpc()
racereadpc(unsafe.Pointer(h), callerpc, funcPC(mapaccess2_faststr))
}
if h == nil || h.count == 0 {
return unsafe.Pointer(&zeroVal[0]), false
}
if h.flags&hashWriting != 0 {
throw("concurrent map read and map write")
}
key := stringStructOf(&ky)
if h.B == 0 {
// One-bucket table.
b := (*bmap)(h.buckets)
if key.len < 32 {
// short key, doing lots of comparisons is ok
for i, kptr := uintptr(0), b.keys(); i < bucketCnt; i, kptr = i+1, add(kptr, 2*sys.PtrSize) {
k := (*stringStruct)(kptr)
if k.len != key.len || isEmpty(b.tophash[i]) {
if b.tophash[i] == emptyRest {
break
}
continue
}
if k.str == key.str || memequal(k.str, key.str, uintptr(key.len)) {
return add(unsafe.Pointer(b), dataOffset+bucketCnt*2*sys.PtrSize+i*uintptr(t.elemsize)), true
}
}
return unsafe.Pointer(&zeroVal[0]), false
}
// long key, try not to do more comparisons than necessary
keymaybe := uintptr(bucketCnt)
for i, kptr := uintptr(0), b.keys(); i < bucketCnt; i, kptr = i+1, add(kptr, 2*sys.PtrSize) {
k := (*stringStruct)(kptr)
if k.len != key.len || isEmpty(b.tophash[i]) {
if b.tophash[i] == emptyRest {
break
}
continue
}
if k.str == key.str {
return add(unsafe.Pointer(b), dataOffset+bucketCnt*2*sys.PtrSize+i*uintptr(t.elemsize)), true
}
// check first 4 bytes
if *((*[4]byte)(key.str)) != *((*[4]byte)(k.str)) {
continue
}
// check last 4 bytes
if *((*[4]byte)(add(key.str, uintptr(key.len)-4))) != *((*[4]byte)(add(k.str, uintptr(key.len)-4))) {
continue
}
if keymaybe != bucketCnt {
// Two keys are potential matches. Use hash to distinguish them.
goto dohash
}
keymaybe = i
}
if keymaybe != bucketCnt {
k := (*stringStruct)(add(unsafe.Pointer(b), dataOffset+keymaybe*2*sys.PtrSize))
if memequal(k.str, key.str, uintptr(key.len)) {
return add(unsafe.Pointer(b), dataOffset+bucketCnt*2*sys.PtrSize+keymaybe*uintptr(t.elemsize)), true
}
}
return unsafe.Pointer(&zeroVal[0]), false
}
dohash:
hash := t.hasher(noescape(unsafe.Pointer(&ky)), uintptr(h.hash0))
m := bucketMask(h.B)
b := (*bmap)(add(h.buckets, (hash&m)*uintptr(t.bucketsize)))
if c := h.oldbuckets; c != nil {
if !h.sameSizeGrow() {
// There used to be half as many buckets; mask down one more power of two.
m >>= 1
}
oldb := (*bmap)(add(c, (hash&m)*uintptr(t.bucketsize)))
if !evacuated(oldb) {
b = oldb
}
}
top := tophash(hash)
for ; b != nil; b = b.overflow(t) {
for i, kptr := uintptr(0), b.keys(); i < bucketCnt; i, kptr = i+1, add(kptr, 2*sys.PtrSize) {
k := (*stringStruct)(kptr)
if k.len != key.len || b.tophash[i] != top {
continue
}
if k.str == key.str || memequal(k.str, key.str, uintptr(key.len)) {
return add(unsafe.Pointer(b), dataOffset+bucketCnt*2*sys.PtrSize+i*uintptr(t.elemsize)), true
}
}
}
return unsafe.Pointer(&zeroVal[0]), false
}
func mapassign_faststr(t *maptype, h *hmap, s string) unsafe.Pointer {
if h == nil {
panic(plainError("assignment to entry in nil map"))
}
if raceenabled {
callerpc := getcallerpc()
racewritepc(unsafe.Pointer(h), callerpc, funcPC(mapassign_faststr))
}
if h.flags&hashWriting != 0 {
throw("concurrent map writes")
}
key := stringStructOf(&s)
hash := t.hasher(noescape(unsafe.Pointer(&s)), uintptr(h.hash0))
// Set hashWriting after calling t.hasher for consistency with mapassign.
h.flags ^= hashWriting
if h.buckets == nil {
h.buckets = newobject(t.bucket) // newarray(t.bucket, 1)
}
again:
bucket := hash & bucketMask(h.B)
if h.growing() {
growWork_faststr(t, h, bucket)
}
b := (*bmap)(add(h.buckets, bucket*uintptr(t.bucketsize)))
top := tophash(hash)
var insertb *bmap
var inserti uintptr
var insertk unsafe.Pointer
bucketloop:
for {
for i := uintptr(0); i < bucketCnt; i++ {
if b.tophash[i] != top {
if isEmpty(b.tophash[i]) && insertb == nil {
insertb = b
inserti = i
}
if b.tophash[i] == emptyRest {
break bucketloop
}
continue
}
k := (*stringStruct)(add(unsafe.Pointer(b), dataOffset+i*2*sys.PtrSize))
if k.len != key.len {
continue
}
if k.str != key.str && !memequal(k.str, key.str, uintptr(key.len)) {
continue
}
// already have a mapping for key. Update it.
inserti = i
insertb = b
goto done
}
ovf := b.overflow(t)
if ovf == nil {
break
}
b = ovf
}
// Did not find mapping for key. Allocate new cell & add entry.
// If we hit the max load factor or we have too many overflow buckets,
// and we're not already in the middle of growing, start growing.
if !h.growing() && (overLoadFactor(h.count+1, h.B) || tooManyOverflowBuckets(h.noverflow, h.B)) {
hashGrow(t, h)
goto again // Growing the table invalidates everything, so try again
}
if insertb == nil {
// The current bucket and all the overflow buckets connected to it are full, allocate a new one.
insertb = h.newoverflow(t, b)
inserti = 0 // not necessary, but avoids needlessly spilling inserti
}
insertb.tophash[inserti&(bucketCnt-1)] = top // mask inserti to avoid bounds checks
insertk = add(unsafe.Pointer(insertb), dataOffset+inserti*2*sys.PtrSize)
// store new key at insert position
*((*stringStruct)(insertk)) = *key
h.count++
done:
elem := add(unsafe.Pointer(insertb), dataOffset+bucketCnt*2*sys.PtrSize+inserti*uintptr(t.elemsize))
if h.flags&hashWriting == 0 {
throw("concurrent map writes")
}
h.flags &^= hashWriting
return elem
}
func mapdelete_faststr(t *maptype, h *hmap, ky string) {
if raceenabled && h != nil {
callerpc := getcallerpc()
racewritepc(unsafe.Pointer(h), callerpc, funcPC(mapdelete_faststr))
}
if h == nil || h.count == 0 {
return
}
if h.flags&hashWriting != 0 {
throw("concurrent map writes")
}
key := stringStructOf(&ky)
hash := t.hasher(noescape(unsafe.Pointer(&ky)), uintptr(h.hash0))
// Set hashWriting after calling t.hasher for consistency with mapdelete
h.flags ^= hashWriting
bucket := hash & bucketMask(h.B)
if h.growing() {
growWork_faststr(t, h, bucket)
}
b := (*bmap)(add(h.buckets, bucket*uintptr(t.bucketsize)))
bOrig := b
top := tophash(hash)
search:
for ; b != nil; b = b.overflow(t) {
for i, kptr := uintptr(0), b.keys(); i < bucketCnt; i, kptr = i+1, add(kptr, 2*sys.PtrSize) {
k := (*stringStruct)(kptr)
if k.len != key.len || b.tophash[i] != top {
continue
}
if k.str != key.str && !memequal(k.str, key.str, uintptr(key.len)) {
continue
}
// Clear key's pointer.
k.str = nil
e := add(unsafe.Pointer(b), dataOffset+bucketCnt*2*sys.PtrSize+i*uintptr(t.elemsize))
if t.elem.ptrdata != 0 {
memclrHasPointers(e, t.elem.size)
} else {
memclrNoHeapPointers(e, t.elem.size)
}
b.tophash[i] = emptyOne
// If the bucket now ends in a bunch of emptyOne states,
// change those to emptyRest states.
if i == bucketCnt-1 {
if b.overflow(t) != nil && b.overflow(t).tophash[0] != emptyRest {
goto notLast
}
} else {
if b.tophash[i+1] != emptyRest {
goto notLast
}
}
for {
b.tophash[i] = emptyRest
if i == 0 {
if b == bOrig {
break // beginning of initial bucket, we're done.
}
// Find previous bucket, continue at its last entry.
c := b
for b = bOrig; b.overflow(t) != c; b = b.overflow(t) {
}
i = bucketCnt - 1
} else {
i--
}
if b.tophash[i] != emptyOne {
break
}
}
notLast:
h.count--
// Reset the hash seed to make it more difficult for attackers to
// repeatedly trigger hash collisions. See issue 25237.
if h.count == 0 {
h.hash0 = fastrand()
}
break search
}
}
if h.flags&hashWriting == 0 {
throw("concurrent map writes")
}
h.flags &^= hashWriting
}
func growWork_faststr(t *maptype, h *hmap, bucket uintptr) {
// make sure we evacuate the oldbucket corresponding
// to the bucket we're about to use
evacuate_faststr(t, h, bucket&h.oldbucketmask())
// evacuate one more oldbucket to make progress on growing
if h.growing() {
evacuate_faststr(t, h, h.nevacuate)
}
}
func evacuate_faststr(t *maptype, h *hmap, oldbucket uintptr) {
b := (*bmap)(add(h.oldbuckets, oldbucket*uintptr(t.bucketsize)))
newbit := h.noldbuckets()
if !evacuated(b) {
// TODO: reuse overflow buckets instead of using new ones, if there
// is no iterator using the old buckets. (If !oldIterator.)
// xy contains the x and y (low and high) evacuation destinations.
var xy [2]evacDst
x := &xy[0]
x.b = (*bmap)(add(h.buckets, oldbucket*uintptr(t.bucketsize)))
x.k = add(unsafe.Pointer(x.b), dataOffset)
x.e = add(x.k, bucketCnt*2*sys.PtrSize)
if !h.sameSizeGrow() {
// Only calculate y pointers if we're growing bigger.
// Otherwise GC can see bad pointers.
y := &xy[1]
y.b = (*bmap)(add(h.buckets, (oldbucket+newbit)*uintptr(t.bucketsize)))
y.k = add(unsafe.Pointer(y.b), dataOffset)
y.e = add(y.k, bucketCnt*2*sys.PtrSize)
}
for ; b != nil; b = b.overflow(t) {
k := add(unsafe.Pointer(b), dataOffset)
e := add(k, bucketCnt*2*sys.PtrSize)
for i := 0; i < bucketCnt; i, k, e = i+1, add(k, 2*sys.PtrSize), add(e, uintptr(t.elemsize)) {
top := b.tophash[i]
if isEmpty(top) {
b.tophash[i] = evacuatedEmpty
continue
}
if top < minTopHash {
throw("bad map state")
}
var useY uint8
if !h.sameSizeGrow() {
// Compute hash to make our evacuation decision (whether we need
// to send this key/elem to bucket x or bucket y).
hash := t.hasher(k, uintptr(h.hash0))
if hash&newbit != 0 {
useY = 1
}
}
b.tophash[i] = evacuatedX + useY // evacuatedX + 1 == evacuatedY, enforced in makemap
dst := &xy[useY] // evacuation destination
if dst.i == bucketCnt {
dst.b = h.newoverflow(t, dst.b)
dst.i = 0
dst.k = add(unsafe.Pointer(dst.b), dataOffset)
dst.e = add(dst.k, bucketCnt*2*sys.PtrSize)
}
dst.b.tophash[dst.i&(bucketCnt-1)] = top // mask dst.i as an optimization, to avoid a bounds check
// Copy key.
*(*string)(dst.k) = *(*string)(k)
typedmemmove(t.elem, dst.e, e)
dst.i++
// These updates might push these pointers past the end of the
// key or elem arrays. That's ok, as we have the overflow pointer
// at the end of the bucket to protect against pointing past the
// end of the bucket.
dst.k = add(dst.k, 2*sys.PtrSize)
dst.e = add(dst.e, uintptr(t.elemsize))
}
}
// Unlink the overflow buckets & clear key/elem to help GC.
if h.flags&oldIterator == 0 && t.bucket.ptrdata != 0 {
b := add(h.oldbuckets, oldbucket*uintptr(t.bucketsize))
// Preserve b.tophash because the evacuation
// state is maintained there.
ptr := add(b, dataOffset)
n := uintptr(t.bucketsize) - dataOffset
memclrHasPointers(ptr, n)
}
}
if oldbucket == h.nevacuate {
advanceEvacuationMark(h, t, newbit)
}
}
|
The pages are generated with Golds v0.3.2. (GOOS=linux GOARCH=amd64)
Golds is a Go 101 project developed by Tapir Liu.
PR and bug reports are welcome and can be submitted to the issue list.
Please follow @Go100and1 (reachable from the left QR code) to get the latest news of Golds. |